L∞ ERROR ESTIMATES AND SUPERCONVERGENCE RESULTS FOR A COLLOCATION-H-1-GALERKIN METHOD FOR ELLIPTIC EQUATIONS
نویسندگان
چکیده
منابع مشابه
A Collocation-i/ '-Galerkin Method for Some Elliptic Equations
A collocation-//"'-Galerkin method is defined for some elliptic boundary value problems on a rectangle. The method uses tensor products of discontinuous piecewise polynomial spaces and collocation based on Jacobi points with weight function >c2(l x)2. Optimal order of L2 rates of convergence is established for the approximation solution. A numerical example which confirms these results is prese...
متن کاملLocal H − 1 Galerkin and adjoint local H − 1 Galerkin procedures for elliptic equations
— Two essentially dual, finite element methods for approximating the solution of the boundary value p rob le m Lu =• V ( Ö V « ) + b • V u + cu — f on Q, a rectangle•, with u = O on dCl are shown to give optimal order convergence. The local H~ method is based on the inner product («, L* v) and the adjoint method on {Lu, v). Discontinuons spaces can be employed for the approximate solution in th...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Superconvergence analysis of multistep collocation method for delay functional integral equations
In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.
متن کاملSuperconvergence Results for the Iterated Discrete Legendre Galerkin Method for Hammerstein Integral Equations
In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equation with a smooth kernel. Using a sufficiently accurate numerical quadrature rule, we obtain super-convergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and L-norm. Numerical examples are given to illustrate the theoretical results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics
سال: 1985
ISSN: 0373-6385
DOI: 10.2206/kyushumfs.39.1